Q505060

POR FAVOR DEIXEI SEU COMENTÁRIO ABAIXO
Mais resoluções 
Q505060 - Seja f(X) = 2X² + X + 4; então, sobre sua representação gráfica, podemos afirmar que:
   y = 2x² + x + 4 => 2x^2+x=y-4 => (:2) = x^2+x/2=y/2-2 => x^2+x/2 => x^2+x/2+A => (x+A)^2 =>
x^2+2Ax+A^2 => 2Ax=x/2 => 2A=½ = A=¼. => (x+¼)^2 => x^2+x/2+1/16 => (x+¼)^2=y/2-2+1/16 =>
(x+¼)^2=y/2 -31/16 =>  (x+¼)^2=½(y-31/8) => V=(-¼, +31/8)  . Trata-se de uma Parábola com
CA=1/2 na função linear, sendo assim seu eixo encontra-se no sentido vertical. Vemos que o CA
é positivo assim trata-se de uma parábola que cresce a função Y, ou concavidade para cima.
Veja que se V= (-¼, +31/8), onde y=31/8, e a parábola tem para cima sobe, evidente que ela nunca
atingirá o eixo das abscissas. 
Algebricamente demonstra-se: Para cortar o eixo “x”, y=0 na curva 2x² + x + 4 ,
temos 2x² + x + 4=0 => b^2 -4ac => 1^2 -4*2*4 => 1-32 = -31,
como somente temos raiz de número negativo em NÁRNIA, ela não corta o eixo “X”. 

Comentários

Postagens mais visitadas deste blog

Exercícios de Triângulos e Geometria Plana

Circunferências Cônicas - Geometria Cartesiana